
Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

What’s New and Cool in Spring
2.0

Rod Johnson
CEO, Interface21

www.interface21.com

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Understand the major enhancements
in Spring 2.0, the latest generation of
the most popular application
programming framework for the
Java™/J2EE™ platforms

Goals of This Talk

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Agenda

• The story so far
• Goals of Spring 2.0
• Feature overview
• Extensible XML configuration
• AOP enhancements and AspectJ integration

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Aims of Spring

• Starting goal of Spring (from 2002) was to help to reduce the
complexity of J2EE™ based development
– To simplify without sacrificing power
– To facilitate best practices that were otherwise difficult to follow
– Grew from practical experience of myself and other practising

architects/developers of J2EE based applications
• Simple things should be simple and complex things should be

possible — Alan Kay
• Unless simple things are simple, complex things are impossible

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Technical Aims of Spring

• Enable applications to be coded from POJOs
– Offer sophisticated configuration capabilities that scale to

real-world complexity
– Allow enterprise services to be applied to those POJOs in a

declarative, non-invasive way

• Examples
– POJOs can be made transactional without the need to know

about transaction APIs
– POJOs can be exposed for management via JMX without

the need to implement an MBean interface
– …

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

POJO Development

• POJO stands for Plain Old Java based Object
• A POJO is not bound to any environment

– No imports of classes that bind it to a specific environment
– Not dependent on a particular lookup mechanism

• Collaborating instances are injected using plain Java
constructors or setter methods

– Prolongs the life of business logic by decoupling it from
volatile infrastructure

• True POJOs are testable in isolation

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Applying Services to
POJOs Declaratively
• Decouples your application objects from

their environment
– Brings leverage, enables reuse

• Actually more powerful than traditional invasive component
models
– Lets you scale up or down without rewriting application code

• Examples
– Switch to global transactions over Java TA
– Export your business objects in different environments

• Switch between SLSB, web service, write/take from JavaSpaces™

technology etc.

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Enabling Technologies

Simple
Object
Simple
Object

AOP

Powerful system
De

pe
nd

en
cy

 In
je

ct
io

n

Portable Service Abstractions

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring in Practice

• Solidity of core Spring abstractions has seen Spring
demonstrate value in a wide range of environments
beyond J2EE™ technology

• Strategic adoption in many enterprises moving away
from traditional costly, inefficient J2EE technology
approaches

• Used as the basis for server technology and further
products from several vendors, including…
– BEA WebLogic 10, WebLogic RealTime Server
– Oracle Fusion middleware products

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

What’s in it for you?

• Proven solutions for common problems
• Makes it easy to follow best practice
• Increases potential for reuse

– Decouples business logic from underlying platfom

• Simple, consistent programming model that scales to
handle real-world complexity and runs in any
environment

• Facilitates testability
– Round trips become much quicker during development

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Who Uses Spring?

• Over 1.1 million downloads and gaining further
momentum

• Extensive and growing usage across many industries,
including…

• Retail and investment banks
– Most of the worlds top 10 banks are Spring users and Interface21

customers
• Insurance companies (US and Europe)
• Government

– European Patent Office
– French Online Taxation System
– US, Canadian and Australian Government Agencies

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Who Uses Spring?
• Scientific Research

– CERN
• Airline industry
• Defence
• Media and online businesses

– eBay
– And many others…

• Software vendors
– Including Oracle and BEA

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

A User’s Perspective

Ever since the introduction of Spring
I have been able to focus on what
really matters: the business focus of
an enterprise application. “Low-Level
plumbing" is a thing of the past and
as an architect I can tie modules and
functionality together – injecting
concerns “I” think matter, where
they matter

What has previously taken numerous
man-years to compose/understand
and implement has been achieved in
a few months using Spring and
Spring Modules

Roland Nelson
European Patent Office

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

A User’s Perspective
French Taxation Office
Online Tax Submission System
Build by Accenture
Based on Spring

Spring has had a significant impact
on the productivity of our J2EE
technology developments. Thanks to
its simple yet powerful programming
model we were able to significantly
improve time to market and build
better quality solutions.

Thomas van de Velde
Lead Java Architect
Accenture Delivery
Architectures

About Voca

Part of the Critical National Infrastructure for
the world’s fourth largest economy

Voca process Direct Debits, Direct Credits and
Standing Orders to move money between
banks

Over 5 billion transactions worth €4.5 trillion in
2005

Some 15% of Europe’s Direct Debits and Direct
Credits are handled by Voca

Over 70% of the UK population use Direct
Debits to pay household bills; Direct
Credits are used to pay over 90% of UK
salaries

Over 80 million items on a peak day

In 30 years, Voca have never lost a payment

Voca’s Experience with Spring and Interface21

Increase in developer productivity without impact on system performance

Increase in testability of application components

Encourages good development practices

Strong support available

Processed a record number of transactions using Spring

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0

• Builds on this solid base of proven technology

• Pursues vision of POJO-based development

• Adds new capabilities and makes many tasks more
elegant

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0 Goals

• Simplify common tasks
• Make Spring more powerful

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0

• Numerous major enhancements and new features,
especially…
– Simpler, more extensible XML configuration

– Enhanced integration with AspectJ

– Introduces cross-language component model

– Integration with JPA (EJB 3.0 Java Persistence API)

• Further stretches Spring's leadership in POJO
programming model

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Agenda

The story so far
Goals of Spring 2.0
Spring 2.0 feature overview
Extensible XML configuration
AOP enhancements and AspectJ integration

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: New Features

• Additional scoping options for beans
– Backed by HttpSession etc.
– Pluggable backing store

• Not tied to web tier

– Extensible and easy to use
• Numerous features in core IoC container and elsewhere to take

advantage of language improvements in Java 5
– Type inference for collections
– New APIs leveraging Java 5 features

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Type Inference: Java

public class DependsOnLists {

private List plainList;

private List<Float> floatList;

public void setFloatList(List<Float> floatList) {
this.floatList = floatList;

}

public void setPlainList(List plainList) {
this.plainList = plainList;

}

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Type Inference: Configuration

<bean class="com.interface21.spring2.ioc.DependsOnLists">
<property name="plainList">

<list>
<value>1</value>
<value>2</value>
<value>3</value>

</list>
</property>
<property name="floatList">

<list>
<value>1</value>
<value>2</value>
<value>3</value>

</list>
</property>

</bean>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: New Features

• Customizable task execution framework for asynchronous task
execution

• CommonJ TimerManager implementation
• Portlet MVC framework

– Analogous to Spring MVC

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: New Features

• Ability to define any named bean in a scripting
language such as Groovy or JRuby
– Named bean conceals both configuration and

implementation language

– Allows for DI, AOP and full range of Spring services

– Allows dynamic reloading while honoring references

• Spring component model is now cross-language

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Groovy components:
Example

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: New Features

• Spring Web MVC enhancements
– More intelligent defaulting to reduce configuration

in typical cases

– Beneficiary from dynamic language support
• Author controllers in Groovy or JRuby, modify them on the fly

during development

– New custom tag library to simplify working with common
controls

• Analogous to Struts tag library

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: New Features

• Message-driven POJOs
– Support for asynchronous reception of Java Message

Service (JMS) API messages
• Full support for XA-transactional receive

• Usual Spring value proposition
– Works in J2EE and J2SE™ platforms

– Closes off one of the remaining corner cases justifying EJB™

usage

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: Ease of Use

• Configuration simplification

• MVC simplification
– Greater use of intelligent defaulting

• SimpleJdbcTemplate

– Designed to take advantage of generics, varargs and
autoboxing on Java EE 5 platform

• And much, much more…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: SimpleJdbcTemplate

• Motivations
– Use new Java 5 features that can simplify usage

• Varargs
• Autoboxing
• Parameterized methods

– Offer only methods that are commonly used
• Most commonly used callbacks
• Fewer overloaded methods

• Offers access to a wrapped JdbcTemplate for more advanced operations

• Provides the SimpleJdbcDaoSupport class

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Varargs and Autoboxing

jdbcTemplate.queryForInt("SELECT COUNT(0) FROM
T_CLIENT WHERE TYPE=? AND CURRENCY=?",

new Object[] { new Integer(13), "GBP" }

);

jdbcTemplate.queryForInt("SELECT COUNT(0) FROM
T_CLIENT WHERE TYPE=? AND CURRENCY=?",

new Object[] { 13, "GBP" }

);

simpleJdbcTemplate.queryForInt("SELECT COUNT(0) FROM
T_CLIENT WHERE TYPE=? AND CURRENCY=?",

13, "GBP"

);

JdbcTemplate,
autoboxing

JdbcTemplate, <=
Java 1.4

SimpleJdbcTemplate,
available on Java 5

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

SimpleJdbcTemplate: Generics

Generics make signatures clearer and eliminate casts

public Map<String, Object>

queryForMap(String sql, Object... args)

throws DataAccessException

public List<Map<String, Object>>

queryForList(String sql, Object ... args)

throws DataAccessException

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Middle tier definitions

Spring 2.0 Enhancements

DAO implementations

Spring web-tier context

Presentation
tier

DAO interfaces

Service objects / Business Facades
(analogous to SLSBs)

RDBMS

Domain objects

Transactional
boundaries

Remote
exporters

JDBC™ software/ ORM

Endpoints for
remote clients:
SOAP, RMI, …

Spring DAO

Spring
AOP

Views: JSP, Velocity,…

Java: MVC controllers

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Agenda

• The story so far
• Goals of Spring 2.0
• Feature overview
• Extensible XML configuration
• AOP enhancements and AspectJ integration
• JPA integration

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

XML Configuration in Spring 2.0

• Ability to define new XML tags to produce one or more
Spring bean definitions

• Tags out of the box for common configuration tasks
• Problem-specific configuration

– Easier to write and to maintain

• XML schema validation
– Better out of the box tool support
– Code completion for free

• Exploits the full power of XML
– Namespaces, schema, tooling

• Backward compatibility
– Full support for <beans> DTD

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

XML Configuration in Spring 2.0

<bean id="dataSource" class="...JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/StockData"/>

</bean>

<jee:jndi-lookup id="dataSource"
jndiName="jdbc/StockData"/>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

XML Configuration in Spring 2.0

<bean id="properties" class="...PropertiesFactoryBean">
<property name="location" value="jdbc.properties"/>

</bean>

<util:properties id="properties"
location="jdbc.properties"/>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Transaction Simplification

• Specialized tags for making objects transactional
– Benefit from code assist

• <tx:annotation-driven />

• Code assist for transaction attributes

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Extended Configuration Options

• Java Management Extensions

• Remoting

• Scheduling

• MVC

• Suggestions and contributions welcome
– A rich library will build over time

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Authoring custom extensions: Step 1

• Write an XSD to define element content
– Allows sophisticated validation, well beyond DTD
– Amenable to tool support during development
– Author with XML tools

• XML Spy

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Authoring custom extensions: Step 2

• Implement a NamespaceHandler to generate Spring BeanDefinitions from
element content

• Helper classes such as BeanDefinitionBuilder to make this easy

public interface NamespaceHandler {

BeanDefinitionParser findParserForElement(
Element element);

BeanDefinitionDecorator findDecoratorForElement(
Element element);

}

public interface BeanDefinitionParser {

void parse(Element element,
BeanDefinitionRegistry registry);

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Authoring custom extensions: Step 3

• Add a mapping in META-INF/spring.handlers
• Can add or hide handlers

http\://www.springframework.org/schema/util=org.springfram
ework.beans.factory.xml.UtilNamespaceHandler

http\://www.springframework.org/schema/aop=org.springframe
work.aop.config.AopNamespaceHandler

http\://www.springframework.org/schema/jndi=org.springfram
ework.jndi.config.JndiNamespaceHandler

http\://www.springframework.org/schema/tx=org.springframew
ork.transaction.config.TxNamespaceHandler

http\://www.springframework.org/schema/mvc=org.springframe
work.web.servlet.config.MvcNamespaceHandler

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Using custom extensions

• Import relevant XSD
• Use the new elements

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"

xsi:schemaLocation="http://www.springframework.org/schema/b
eans http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

XML Configuration Best Practices

• Standard <bean> tags
– Still a great solution
– General configuration tasks
– Application-specific components

• DAOs, Services, Web Tier

• Custom tags
– Infrastructure tasks

• Java Naming and Directory Interface™ API , Properties, AOP,
Transactions

– 3rd party packages

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Agenda

The story so far
Goals of Spring 2.0
Feature overview
Extensible XML configuration
AOP enhancements and AspectJ integration

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Recap: Why AOP Matters

• Essential complement to DI to enable a POJO
programming model

• Provides the tools to think about application structure
in a new way

• Both parts of the same big picture

• Let’s step back…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

A Common Vocabulary

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Enterprise application vocabulary

the vocabulary of enterprise applications

service layer
dao

repository
web layer

data access layer
controller

business service

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Requirements

• Many requirements are expressed in terms of
this vocabulary
– the service layer should be transactional
– when a dao operation fails the SQL exception

should be translated
– service layer objects should not call the web

layer
– a business service that fails with a concurrency

related failure can be retried

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Meaningful abstractions

It would be simpler…

and more powerful

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Meaningful abstractions

if we could use these

abstractions

directly in the

implementation

terms

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Faithfulness to requirements

It would be simpler…

and more powerful

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Faithfulness to requirements

if the implementation looked
like the requirement

• One requirement, one code
module

• No need to modify many classes
to implement one requirement

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

System Architecture
@Aspect
public class SystemArchitecture {

@Pointcut("within(a.b.c.service..*")
public void inServiceLayer() {}

@Pointcut("within(a.b.c.dao..*")
public void inDataAccessLayer() {}

@Pointcut("execution(* a.b.c.service.*.*(..))")
public void businessService() {}

…
}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

AOP in Spring 2.0

• So AOP is important…
– How do we make Spring AOP better?

• Simplified XML configuration using <aop:*/> tags
• Closer AspectJ integration

– Pointcut expression language
– AspectJ-style aspects in Spring AOP
– @AspectJ-style aspects in Spring AOP

• Fully interoperable with ajc compiled aspects

• Spring ships with AspectJ aspects for
Spring/AspectJ users
– Dependency injection on any object even if it isn’t constructed by

the Spring IoC container

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring AOP (1.2.x): Pros and Cons

• Pros
– Solid proxy-based model
– Highly extensible
– Ease of adoption

• Zero impact on development process and
server environment

• Cons
– No pointcut expression language
– XML configuration can be verbose
– Highly extensible, but only in Java technology

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0 Aims for Spring AOP

• Build on strengths, eliminate weaknesses
• Preserve ease of adoption

– Still zero impact on development
process, deployment

– Easier to adopt

• Benefit from the power of AspectJ
• Provide a comprehensive AOP roadmap

for Spring users, spanning
– Spring AOP
– AspectJ

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0 Aims for Spring AOP

• Solution
– Work with AspectJ, the de facto standard

for full-featured AOP

– AspectJ lead Adrian Colyer is now CTO
at Interface21

– Adrian is now working on Spring as well as AspectJ

– Take advantage of XML configuration extensions

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Benefits for Spring AOP

• Benefits from industry leading pointcut expression
language

• Benefits from well thought-out semantics behind
@AspectJ model

• Gains ability to have type-safe advice
• Benefits from input from leading AOP thinkers

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Benefits for AspectJ

• AspectJ is a language, not a framework
– Benefits from a framework offering DI and service

abstractions

– DI is as compelling for aspects as for objects

• AspectJ gains an incremental adoption path

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Benefits for You

• You can use the same knowledge in Spring
and AspectJ

• Exciting possibilities around rich domain models

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Pointcut Expressions

• Spring can use AspectJ pointcut expressions
– In Spring XML
– In @AspectJ aspects
– In Java code (with Spring ProxyFactory)

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

What’s So Good About AspectJ
Pointcut Expressions?
• Go far beyond simple wildcarding

• AspectJ views pointcuts as first-class
language constructs
– Can compose pointcuts into expressions

– Can reference named pointcuts, enabling reuse

– Can perform argument binding

– Can express complex matching logic concisely

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

AspectJ Is Well Documented…

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

AOP Is About Pointcuts

• Pointcuts give us the tool to think about program
structure in a different way to OOP

• Without a true pointcut model we have only trivial
interception
– Does not achieve aim of modularizing

crosscutting logic
– DRY (Don’t repeat yourself) Principle

• Spring AOP has always had true pointcuts
– But now they are dramatically improved

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

public class JavaBeanPropertyMonitor {

private int getterCount = 0;
private int setterCount = 0;

public void beforeGetter() {
this.getterCount++;

}

public void afterSetter() {
this.setterCount++;

}

…

POJO Methods as Advice

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

<aop:config>
<aop:aspect bean="javaBeanMonitor">

<aop:before
pointcut=
"execution(public !void get*())"

method="beforeGetter"
/>
<aop:afterReturning

pointcut=
"execution(public void set*(*))"

method="afterSetter"
/>

</aop:aspect>
</aop:config>

Applying Pointcuts

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

@AspectJ-style Aspects

@Aspect
public class AjLoggingAspect {

@Pointcut("execution(* *..Account.*(..))")
public void callsToAccount(){}

@Before("callsToAccount()")
public void before(JoinPoint jp) {

System.out.println("Before [" +
jp.toShortString() + "].");

}

@AfterReturning("callsToAccount()")
public void after() {

System.out.println("After.");
}

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Setting up @AspectJ-style Aspects in
Spring

<aop:aspectj-autoproxy/>

<bean id="account" class="demo.Account"/>

<bean id="aspect" class="demo.ataspectj.AjLoggingAspect"/>

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Argument binding

@Aspect
public class TrackStringSetters {

// Of course saving all names is not suitable for
// production use, but this is a simple sample
private List<String> namesRequested = new LinkedList();

@Before("execution(* *.set*(String)) && args(name) && this(mytype)")
public synchronized void onStringSetter(String name, Mytype mytype) {

if (namesRequested.size() > historySize) {
namesRequested.remove(0);

}
namesRequested.add(name);

}

public List<String> getNamesRequested() {
return namesRequested;

}

}

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: Unique AOP Unification

• Brings same programming model
(based on AspectJ) to proxy-based and class weaving
based AOP
– Choice of implementation strategies
– Consistent programming model
– Based on AspectJ, proven de facto standard for AOP

• Can compile aspects or use AspectJ
load-time weaving, preserving the same programming
model

• Again, no conflict between simplicity and power
– Less powerful, less general mechanisms are simplistic, rather

than simple

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0 AOP:
Demo

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring and Java Persistence API

• Java Persistence API (JPA) is the persistence part of the
Enterprise JavaBeans™ 3.0 specification
– Finally standardizes real-world O/R mapping functionality

• Spring 2.0 integrates Java Persistence API in its consistent data
access abstraction

• As always, Spring offers
– Unified programming model for Java EE and Java SE platforms

– Ease of testing (without need to deploy to an application server)

• Spring allows access to full JPA functionality without an EJB
container

• Value adds beyond the JPA 1.0 specification that work portably
across all leading persistence providers

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0 JPA:
Demo

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: What Breaks?

Middle tier definitions

DAO implementations

Spring web-tier context

Presentation
tier

DAO interfaces

Service objects / Business Facades
(analogous to SLSBs)

RDBMS

Domain objects

Transactional
boundaries

Remote
exporters

JDBC™ software/ ORM

Endpoints for
remote clients:
SOAP, RMI, …

Spring DAO

Spring
AOP

Views: JSP, Velocity,…

Java: MVC controllers

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Spring 2.0: What Breaks?

• Spring 2.0 is fully backward compatible

• Enterprise-class technologies can’t remain credible if
they break existing application code

• POJO-based technology offers the stability
in programming model J2EE technology
has lacked
– Spring offers the mature, proven realisation

• Across J2EE and J2SE platforms

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Do I Need Java 5 with Spring 2.0?

• No, but you’ll get an increasing amount of cool stuff if
you are able to use Java 5
– Spring 1.2 already introduced value adds on Java 5, such as

@Transactional
– AspectJ integration requires Java 5 for full range of pointcut

expressions
• Spring 2.x series will run on Java platform

1.3 and above
• Continues to run on all leading application servers,

web containers
– Or without any other container

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Summary (1)

• Spring 2.0 Aims
– Build on core Spring aim of offering a POJO

programming model
– Make Spring both simpler to use and more powerful

• Spring 2.0 introduces simplified, extensible XML
configuration
– Custom tags for Java Naming and Directory Interface API,

AOP, transactions and more
• Significant improvements in Spring AOP

– Pointcut expression support
– AspectJ-style aspect support
– @AspectJ aspect support

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Summary (2)

• Many other enhancements, including…
– TaskExecutor abstraction
– Adds asynchronous JMS API to complement existing

synchronous JMS API support
• Message-driven POJOs

– Message reception within XA transaction
– Ease-of-use improvements for Spring MVC
– Portlet MVC framework

Copyright 2004-2006, Interface21 Ltd. Copying, publishing, or
distributing without expressed written permission is prohibited.

Questions

	What’s New and Cool in Spring 2.0
	Goals of This Talk
	Agenda
	Aims of Spring
	Technical Aims of Spring
	POJO Development
	Applying Services to �POJOs Declaratively
	Enabling Technologies
	Spring in Practice
	What’s in it for you?
	Who Uses Spring?
	Who Uses Spring?
	A User’s Perspective
	A User’s Perspective
	About Voca �
	Voca’s Experience with Spring and Interface21
	Spring 2.0
	Spring 2.0 Goals
	Spring 2.0
	Agenda
	Spring 2.0: New Features
	Type Inference: Java
	Type Inference: Configuration
	Spring 2.0: New Features
	Spring 2.0: New Features
	Groovy components:�Example
	Spring 2.0: New Features
	Spring 2.0: New Features
	Spring 2.0: Ease of Use
	Spring 2.0: SimpleJdbcTemplate
	Varargs and Autoboxing
	SimpleJdbcTemplate: Generics
	Spring 2.0 Enhancements
	Agenda
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	Transaction Simplification
	Extended Configuration Options
	Authoring custom extensions: Step 1
	Authoring custom extensions: Step 2
	Authoring custom extensions: Step 3
	Using custom extensions
	XML Configuration Best Practices
	Agenda
	Recap: Why AOP Matters
	A Common Vocabulary
	Enterprise application vocabulary
	Requirements
	Meaningful abstractions
	Meaningful abstractions
	Faithfulness to requirements
	Faithfulness to requirements
	System Architecture
	AOP in Spring 2.0
	Spring AOP (1.2.x): Pros and Cons
	Spring 2.0 Aims for Spring AOP
	Spring 2.0 Aims for Spring AOP
	Benefits for Spring AOP
	Benefits for AspectJ
	Benefits for You
	Pointcut Expressions
	What’s So Good About AspectJ Pointcut Expressions?
	AspectJ Is Well Documented…
	AOP Is About Pointcuts
	POJO Methods as Advice
	Applying Pointcuts
	@AspectJ-style Aspects
	Setting up @AspectJ-style Aspects in Spring
	Argument binding
	Spring 2.0: Unique AOP Unification
	Spring 2.0 AOP:�Demo
	Spring and Java Persistence API
	Spring 2.0 JPA:�Demo
	Spring 2.0: What Breaks?
	Spring 2.0: What Breaks?
	Do I Need Java 5 with Spring 2.0?
	Summary (1)
	Summary (2)
	Questions

