INTERFACEZ] @
ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

7

What's New and Cool in Spring
2.0

Rod Johnson

CEO, Interface21l
www.interface21.com

~

IN 1 I-_HFALIL--_EIKEI
Goals of This Talk

Understand the major enhancements
In Spring 2.0, the latest generation of

the most popular application
programming framework for the

Java™/J2EE™ platforms

opring

INTERFABEZ](_Z/]]

Agenda

* The story so far

* Goals of Spring 2.0

* Feature overview

« Extensible XML configuration

 AOP enhancements and AspectJ integration

)
-2006, Interface21 IL-t'd. Cop ishing, or
hout expressed written per s prohibite

Spring

|NTERFAc:Ez1@:'

Aims of Spring

« Starting goal of Spring (from 2002) was to help to reduce the
complexity of J2EE™ based development

— To simplify without sacrificing power
— To facilitate best practices that were otherwise difficult to follow

— Grew from practical experience of myself and other practising
architects/developers of J2EE based applications

e Simple things should be simple and complex things should be
possible — Alan Kay

* Unless simple things are simple, complex things are impossible

2006, Interface21 Ltd. Cop

blishing, or i, od ur Y
out expressed written perl prohibited. i \.5 1_) 1 1 I l E__];
i,

e

|NTERFAc:Ez1@:'

Technical Aims of Spring

* Enable applications to be coded from POJOs
— Offer sophisticated configuration capabilities that scale to
real-world complexity

— Allow enterprise services to be applied to those POJOs in a
declarative, non-invasive way

« Examples
— POJOs can be made transactional without the need to know
about transaction APIs

— POJOs can be exposed for management via JIMX without
the need to implement an MBean interface

2006, Interface21 Ltd. Cop

blishing, or i, od ur Y
out expressed written perl prohibited. i \.5 1_) 1 1 I l E__];
i,

e

INTERFACEZ](Z)

POJO Development

« POJO stands for Plain Old Java based Object

« A POJO is not bound to any environment
— No imports of classes that bind it to a specific environment

— Not dependent on a particular lookup mechanism

Collaborating instances are injected using plain Java
constructors or setter methods

— Prolongs the life of business logic by decoupling it from
volatile infrastructure

e True POJOs are testable in isolation

; —
'r -2006, Interface21 blishing, or S o o
> hout expressed written per s prohibited. pI l rl =

| -

INTERFACEZI@

Applying Services to
POJOs Declaratively

* Decouples your application objects from
their environment

— Brings leverage, enables reuse
« Actually more powerful than traditional invasive component
models
— Lets you scale up or down without rewriting application code
 Examples
— Switch to global transactions over Java TA

— Export your business objects in different environments

Switch between SLSB, web service, write/take from JavaSpaces™
technology etc.

L]]rl e
-2006, Interface21 Ltd. Cop blishing, or | S W g o)
i hout expressed writ:ll' n perm s prohibited. pI 1 I l -
ul : e

INTERFACE 21\{&

Enabling Technologies

Powerful system

Spring

INTERFADEZ1@."

Spring In Practice

« Solidity of core Spring abstractions has seen Spring
demonstrate value in a wide range of environments
beyond J2EE™ technology

e Strategic adoption in many enterprises moving away
from traditional costly, inefficient J2EE technology
approaches

e Used as the basis for server technology and further
products from several vendors, including...
— BEA WebLogic 10, WebLogic RealTime Server
— Oracle Fusion middleware products

I

i
opy! 4-2006, Interface21 Ltd. Cop ishing, or i, - (}-
istri ithout expressed written per s prohibited. - }_) I 1 I 1 4
L 0

|

INTERFABEZ1@,"

What'’s In it for you?

* Proven solutions for common problems
« Makes it easy to follow best practice

* Increases potential for reuse
— Decouples business logic from underlying platfom

e Simple, consistent programming model that scales to
handle real-world complexity and runs in any
environment

* Facilitates testability

— Round trips become much quicker during development

E i:
'y
opy! -2006, Interface21 Ltd. Cop blishing, or A g . i (}-
’ istri | hout expressed written per s prohibited. ﬁ b }_) 1 1 1 1 —
: i

IN'T'ERF.»I'*‘&BEZ’I(_2/'1j

Who Uses Spring?

 Over 1.1 million downloads and gaining further
momentum

« Extensive and growing usage across many industries,
Including...
¢ Retail and investment banks

— Most of the worlds top 10 banks are Spring users and Interface21
customers

* Insurance companies (US and Europe)

« Government
— European Patent Office
— French Online Taxation System
— US, Canadian and Australian Government Agencies

blishi e 1
I bl Spring
—

2006, Interface21 Ltd Cop
out expressed wrltten per

i

INTERFACEZ]@

Who Uses Spring?

e Scientific Research
— CERN

 Airline industry
* Defence

 Media and online businesses
— eBay
— And many others...

e Software vendors
— Including Oracle and BEA

-]ri
-2006, InterfaceZl,.IL . Cop blishing, or
i hout expressed writ:ll n per s prohibited.
;o

Spring

A User’s Perspective

Ever since the introduction of Spring
| have been able to focus on what
really matters: the business focus of
an enterprise application. “Low-Level
plumbing" is a thing of the past and
as an architect | can tie modules and
functionality together — injecting
concerns “I” think matter, where

they matter

What has previously taken numerous
man-years to compose/understand
and implement has been achieved in
a few months using Spring and
Spring Modules

Roland Nelson
European Patent Office

| i

-2006, Interface21

hout expressed writ
+ |I

blishing, or
s prohibited.

INTERFACEZ]

;@ saufikanl plue Mide - ol Flrspo.s

File Edit Wiew Go Bookmarks

@ -

Tools Help

Ackion=Formé

’ Getting Started E‘,.' Latest Headlines

\plate=ep/EN/home. hts

a Downloading Skype

Home | Contact

Guick Search

Search with kevwords, ar for
persons or organisations

Advanced Search

Search using any ofthe
available fields

Nurnber Search

Search using application,
accession, publication or
pricrity number

Clzssification Sezrch

Browese or search the
Classification System ofthe
European Patent Office

|| esp@cenet document wisw

English D

esp@cenet® and the IPC Reform IPCE

From the beginning of Januarny 2006 the new International Patent Classification
(wersion) will be in foree. Thiswill mean that there will be new, more powerful and
focuszed possibilities of searching patent documents.

espi@ceret userswho are already familiar with ECLA will readily see that there are
concepts and practices common to the new IFCS

The following is a simple description of how the IPCE affects espi@cenet users. For
more detailed information about IPC £ please see:
hitpuifipe-reform.european-patent-office.argfinde:cen.php

In simple terms the new IFC & classifications come in 9 "flavours":

Core level

Advanced level

Invention information

MNon-Invention information - sometimes called
"Additional Information,

L 2ALL 2% i

“ouwill see "Mon invention information” and "additional information" used
interchangeably here and in other aticles about the IPCE.

The Core Lewel may be thought of as a relatively low resolution, static, classification
lewal. 1t will be revised on 3 three yvearly oycle.

The Adwanced Lewvel can be considered as a high resolution, dynamic classification

. espiicenet Home page

Help index-

Sche
Pleas
main
esp
be ur
from

WO
Espas
WO
date
hawve
fiarmm:
are r
not
year

Lates
rEP1
o0
rUS2
rUS7
rGB:

Dane

Spring

INTERFACEZ]

A User’s Perspective

French Taxation Office
Online Tax Submission System

Spring has had a significant impact Build by Accenture
on the productivity of our J2EE Based on Spring
technology developments. Thanks to

its simple yet powerful programming impots.gouvr - IMPRIMER & A€
model we were able to significantly @ ParTicuLiErs

improve time to market and build | i | g

better quality solutions.

Formulaire H® 2044 Spéciale

(o . us 9| N of of
Thomas van de Velde s

L ead J av a A r C h i te Ct S:Slaslézizu;;sl;sa:;r;déris(iques des immeubles spéciaux des sociétés immobhiliéres dont vous R T

. » Immeubles en secteurs sauvegardés ou assimilés (autorisation de travaux obtenue avant le 01/07/1893) [F]
Accenture Delivery
Architectures

+ Immeubles en secteurs sauvegardés ou assimilés (autorization de travaux obtenue entre le 01/07/1993 O
et |2 31/12/12594)

+ Immeubles en secteurs sauvegardés ou assimilés (autarisation de travaux obtenue a partir du
01:01/19395)
* Immeubles situés en zones franches urbaines [F]
* Immeubles monuments historigues il
* Immeubles en nues-propriétés [F]
(& retour (> suite |

iy
'|

—2006 erfaceZl
hout ex| essed Wr|

. Co blishing, or
per s prohibited.

T

About Voca

Part of the Critical National Infrastructure for
the world’s fourth largest economy

Voca process Direct Debits, Direct Credits and
Standing Orders to move money between
banks

Over 5 billion transactions worth €4.5 trillion in
2005

Some 15% of Europe’s Direct Debits and Direct
Credits are handled by Voca

Over 70% of the UK population use Direct
Debits to pay household bills; Direct
Credits are used to pay over 90% of UK
salaries

Over 80 million items on a peak day

In 30 years, Voca have never lost a payment

Voca’s Experience with Spring and Interface21

Increase in developer productivity without impact on system performance
Increase in testability of application components

Encourages good development practices

Strong support available

Processed a record number of transactions using Spring

INTERFACEZ]@

Spring 2.0

* Builds on this solid base of proven technology
e Pursues vision of POJO-based development

* Adds new capabilities and makes many tasks more
elegant

i £
-2006, Interface21 Ltd. Cop blishing, or S B o o)
i hout expressed writ:ll n per s prohibited. pI 1 I 1 —
v I L -

INTERFACEZ] @

Spring 2.0 Goals

e Simplify common tasks
« Make Spring more powerful

(I A Y
7 e 5

|NTERFABE21@-’

Spring 2.0

 Numerous major enhancements and new features,
especially...

— Simpler, more extensible XML configuration

— Enhanced integration with AspectJ

— Introduces cross-language component model

— Integration with JPA (EJB 3.0 Java Persistence API)

* Further stretches Spring's leadership in POJO
programming model

2006, Interface21 Ltd. Cop

blishing, or - ~\ i .
out expressed written perrls prohibited. ‘ \.S I_) 1 1 I l E__];
i,

e

INTERFACEZ](Z)

Agenda

The story so far

Goals of Spring 2.0

Spring 2.0 feature overview

Extensible XML configuration

AOP enhancements and AspectJ integration

7 A

INTERFACEZI@

Spring 2.0: New Features

« Additional scoping options for beans
— Backed by HttpSession etc.

— Pluggable backing store
Not tied to web tier

— Extensible and easy to use

* Numerous features in core |oC container and elsewhere to take
advantage of language improvements in Java 5
— Type inference for collections
— New APIs leveraging Java 5 features

1 i 1
|
-2006, Interface21]_}‘d. Cop blishing, or il
i hout expressed writT'Ien perm s prohibited.
|I'- ¥

Spring

INTERFACEZ]@

Type Inference: Java

public class DependsOnLists {
private List plainList;
private List<Float> floatList;

public void setFloatList(List<Float> floatList) {
this.floatList = floatList;

+

public void setPlainList(List plainList) {
this.plainList = plainList;
by

; jm— 2
F

2006, Interface21 blishing, or L ... -

‘l.hout expressed ertfﬁ perI prohibited. ﬁ ‘ SpI l rl 5_11

| -

INTERFACEZ]@

Type Inference: Configuration

<bean class=""com.interface2l.spring2.ioc.DependsOnLists">
<property name="plainList''>
<list>
<value>1</value>
<value>2</value>
<value>3</value>
</list>
</property>
<property name="floatList">
<list>
<value>1</value>
<value>2</value>
<value>3</value>
</list>
</property>

</bean>
-2006, Interface21 blishing, or S E)
hout ex;ﬂressed written per s prohibited. p rl nh

INTERFACE 21\{&

Spring 2.0: New Features

« Customizable task execution framework for asynchronous task
execution

« CommonJ TimerManager implementation

e Portlet MVC framework
— Analogous to Spring MVC

-20086, terfacez blishing, or .
hout ex| essed Wr| per s prohibited. p rl ng

INTERFACEZ](Z)

Spring 2.0: New Features

« Ability to define any named bean in a scripting
language such as Groovy or JRuby

— Named bean conceals both configuration and
implementation language

— Allows for DI, AOP and full range of Spring services

— Allows dynamic reloading while honoring references

e« Spring component model is now cross-language

; —
'r -2006, Interface21 blishing, or S o o
> hout expressed written per s prohibited. pI l rl =

| -

INTERFACEZ] @
ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

- 3

Groovy components:
Example

TR i
l."1I \ e A
op it 2004-2006, Interface@iiitd, {CO Ao,
distribtiting without expressed "I‘ en.p "1'\\‘ sion is prohibited.
At y

Lo

IN'T'ERF.»I'*‘&BEZ’I(_2/'1j

Spring 2.0: New Features

* Spring Web MVC enhancements

— More intelligent defaulting to reduce configuration
In typical cases

— Beneficiary from dynamic language support

Author controllers in Groovy or JRuby, modify them on the fly
during development

— New custom tag library to simplify working with common
controls

Analogous to Struts tag library

blishi e 1
I bl Spring
—

2006, Interface21 Ltd Cop
out expressed wrltten per

i

INTERFACEZ](Z)

Spring 2.0: New Features

« Message-driven POJOs

— Support for asynchronous reception of Java Message
Service (JMS) APl messages

Full support for XA-transactional receive
Usual Spring value proposition
— Works in J2EE and J2SE™ platforms

— Closes off one of the remaining corner cases justifying EJB™
usage

i- I’)L‘f:h'?tﬂt;’; ' ‘ Spring

-2006, MterfaceZl
out ex?essed writ per

INTERFACEZ]@

Spring 2.0: Ease of Use

« Configuration simplification
« MVC simplification
— Greater use of intelligent defaulting

 SimpleJddbcTemplate

— Designed to take advantage of generics, varargs and
autoboxing on Java EE 5 platform

e And much, much more...

. = =
‘r -2006, Interface21 blishing, or : S o o

; hout expressed written per s prohibited. p rl n =

J

INTERFACEZ]@

Spring 2.0: SimpleJdbcTemplate

e Motivations

— Use new Java 5 features that can simplify usage
Varargs
Autoboxing
Parameterized methods

— Offer only methods that are commonly used
Most commonly used callbacks
Fewer overloaded methods

« Offers access to a wrapped JdbcTemplate for more advanced operations

e Provides the SimpleJddbcDaoSupport class

| F

-2006, Interface21 bllshlng or -
'. i l i { Spring
-

INTERFACEZ]@

Varargs and Autoboxing

JdbcTemplate, <=

Java l4
jdbcTemplate.queryForInt("*'SELECT COUNT(O) FROM

T CLIENT WHERE TYPE=? AND CURRENCY=7?"',
new Object[] { new Integer(13), "GBP" }

)

. 1—_ JdbcT late,
jdbcTemplate.queryForInt(""'SELECT COUNT(O) FROM o empee

t
T_CLIENT WHERE TYPE=? AND CURRENCY=?", autoboxing
new Object[] { 13, "GBP" }

)

simpleddbcTemplate. queryForInt("SELECT COUNT(O) FROM
T CLIENT WHERE TYPE=? AND CURRENCY=?"'

" " ‘ SimpleJdbcTemplate,
13, "GP available on Java 5

F
2006, Interface21 blishing, or 3 -
'-hout i Wn# perI PRy ‘ ! Sp rl rl g
L

Hﬁ"FEH?F?\E:EﬁZ](;E?)

SimpleJdbcTemplate: Generics

Generics make signatures clearer and eliminate casts

public Map<String, Object>
queryForMap(String sqgql, Object... args)
throws DataAccessException

public List<Map<String, Object>>
queryForList(String sql, Object ... args)
throws DataAccessException

| F
-2006, Interface21 Co blishing, or -
-

INTERFACEZ]@

Spring 2.0 Enhancements

Endpoints for
remote clients:
SOAP, RMI, ...

Service objects / Business Facades Transactional
(analogous to SLSBs) boundaries

S Domain objects

AOP
DAO interfaces «—

\

Spring DAO ' '
g DAOQO implementations Y
e N
P W I
| _an .; _/ \\

ring

INTERFACEZ](Z)

Agenda

* The story so far

* Goals of Spring 2.0

* Feature overview

 Extensible XML configuration

 AOP enhancements and AspectJ integration
« JPA Integration

7 A

INTERFACEZ'IQE)

XML Configuration in Spring 2.0

« Ability to define new XML tags to produce one or more
Spring bean definitions

* Tags out of the box for common configuration tasks
* Problem-specific configuration
— Easier to write and to maintain

« XML schema validation
— Better out of the box tool support
— Code completion for free

* Exploits the full power of XML

— Namespaces, schema, tooling
« Backward compatibility

— Full support for <beans> DTD
] ;
-2006, Int f 21 blishi :
| i A Spring
{ —

INTERFACEZ1 @

XML Configuration in Spring 2.0

<bean i1d="'dataSource"™ class=".._.JndiObjectFactoryBean'>
<property name=""jndiName" value="jdbc/StockData'/>
</bean>

<jee:jndi-lookup 1d="dataSource"
JjndiName=""jdbc/StockData" />

blishing, or
prohlblted

%OG erface
ut ssed per s

Spring

INTERFACEZ1 @

XML Configuration in Spring 2.0

<bean 1d=""properties" class=".._PropertiesFactoryBean'>
<property name="location" value="jdbc.properties'/>
</bean>

<util:properties 1d=""properties”
location=""jdbc.properties’' />

blishing, o
prohibited

%OG erface
ut ssed per s

. Spring

INTERFACEZ](Z)

Transaction Simplification

« Specialized tags for making objects transactional
— Benefit from code assist

e <tx:annotation-driven />
 Code assist for transaction attributes

(. A E Ry Spring

INTERFACE 21\{&

Extended Configuration Options

« Java Management Extensions
* Remoting

e Scheduling

« MVC

¢ Suggestions and contributions welcome

— Arrich library will build over time

J A,
-2006, trf e21 blishing, or :
. A E Spring
—
i

INTERFACEZ21\4

Authoring custom extensions: Step 1

* Write an XSD to define element content
— Allows sophisticated validation, well beyond DTD
— Amenable to tool support during development

— Author with XML tools
XML Spy

J A,
2006, terfaceZl bllshlng or :
'-F W#"I 'Ly ' ‘ Spring
—
i

INTERFACEZ](Z)

Authoring custom extensions: Step 2

* Implement a NamespaceHandler to generate Spring BeanDefinitions from
element content

* Helper classes such as BeanDefinitionBuilder to make this easy

public interface NamespaceHandler {

BeanDefinitionParser findParserForElement(

Element element);
BeanDefinitionDecorator findDecoratorForElement(

Element element);

public interface BeanDefinitionParser {

void parse(Element element,
BeanDefinitionRegistry registry);

.

-2006, MterfaceZl blishing, or -

hout ex?essed erﬁ perl prohibited. " S p rl rl g
-

|NTERFABE21@-’

Authoring custom extensions: Step 3

* Add a mapping in META-INF/spring.handlers
e Can add or hide handlers

http\://www.springframework.org/schemaZutil=org.springfram
ework.beans.factory.xml _Uti INamespaceHandler

http\://www.springframework.org/schema/aop=org.springframe
work.aop.config.AopNamespaceHandler

http\://www.springframework.org/schema/jndi=org.springfram
ework. gndi.config.JndiNamespaceHandler

http\://www.springframework.org/schema/tx=org.springframew
ork.transaction.config.TxNamespaceHandler

http\://www.springframework.org/schema/mvc=org.springframe
work.web.servlet.config.MvcNamespaceHandler

2006, Interface21 Ltd. Cop

blishing, or y g gl -
out expressed written perrls prohibited. ‘ | I_) 1 1 I l E__];
i,

e

INTERFACEZI@

Using custom extensions

* Import relevant XSD
« Use the new elements

<?xml version="1.0" encoding=""UTF-8""?>
<beans xmlns— ‘http://www. sprlngframework org/schema/beans

Xsi:schemalLocation="http://www.springframework.org/schema/b

eans http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/Zaop
http://www.springframework.org/schema/aop/spring-aop.xsd">

L]]rl e
-2006, Interface21 Ltd. Cop) blishing, or | S W g o)
i hout expressed wrltR n per s prohibited. pI 1 I l —_
oy] L -

INTERFACEZ]@

XML Configuration Best Practices

« Standard <bean> tags

— Still a great solution
— General configuration tasks
— Application-specific components
DAOs, Services, Web Tier
e Custom tags

— Infrastructure tasks

Java Naming and Directory Interface™ API , Properties, AOP,
Transactions

— 3" party packages

blish B B
lp'fo;:gt;; Spring
L -

2006, Interfacele
out expressed wrlt N per

i

INTERFACEZ1 @

Agenda

The story so far

Goals of Spring 2.0

Feature overview

Extensible XML configuration

AOP enhancements and AspectJd integration

H | & i—
|
—ZE)OG, erface . Co blishing, or
4 hout expressed wri per s prohibited.
i il
| LB

Spring

INTERFACEZI@

Recap: Why AOP Matters

« Essential complement to DI to enable a POJO
programming model

* Provides the tools to think about application structure
In a new way

« Both parts of the same big picture

* Let’s step back...

L]]rl
-2006, Interface21 Ltd. Cop ishing, or
i hout expressed writ:ll' n perm s prohibite
oy

Spring

INTERFACEZ]1

ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

it 2004-2006, Interface@
hg without expressed 1

A Common Vocabulary

Ltd,|C /

en pe

INTERFACEZ1 @

Enterprise application vocabulary

the VOCab U Iary of enterprise applications

business service

service layer
repository

dao
controller web layer

data access layer

H — [.
| }
—2;06, erface . Co blishing, or?
' ' hout expressed wri per s prohibited.
I f

Spring

INTERFACEZ’I@

Requirements

* Many requirements are expressed in terms of
this vocabulary

— the service layer should be transactional

— when a dao operation fails the SQL exception
should be translated

— service layer objects should not call the web
layer

— a business service that fails with a concurrency
related failure can be retried

l

2006, | t f le_ﬂld Co
ut expre dwt?e per

.

Spring

IN'T'ERF.»I'*‘&BEZ’I(_2/'1j

Meaningful abstractions

twould be SIMPIET . ..

amore POWETTU

Spring

Meaningful abstractions
If we could use these

apStrREHoONS

directly in the
Implementation

3 L]

J ' '
-2006, Interface21 Co
hout expressed writ per

INTERFACEZ](Z)

Spring

INTERFACEZ’I@

Faithfulness to requirements

twould be SIMPIET . ..

amore POWETTU

Spring

INTERFADE21L2)-"

Faithfulness to requirements

If the Iimplementation looked
like the requirement

* One requirement, one code
module

* No need to modify many classes
to Implement one requirement

Spring

IN'T'ERF.»I'*‘&BEZ’I(_2/'1j

System Architecture

@Aspect
public class SystemArchitecture {

@Pointcut('within(a.b.c.service..*")
public void iInServicelLayer() {}

@Pointcut("'within(a.b.c.dao..*")
public void 1nDataAccessLayer() {}

@Pointcut('execution(* a.b.c.service.*_.*(..))")
public void businessService() {}

H | i
4. N & A
-2006, Interface21 Ltd. Cop blishing, or S .
di(#'hout expressed writg'én perI prohibited. ‘ 1_)1 l 1 l E__];
| e

INTERFACEZI@

AOP In Spring 2.0

« S0 AOP is important...
— How do we make Spring AOP better?
« Simplified XML configuration using <aop:*/> tags

* Closer AspectJ integration
— Pointcut expression language
— AspectJ-style aspects in Spring AOP
— @AspectJ-style aspects in Spring AOP
Fully interoperable with ajc compiled aspects
e Spring ships with AspectJ aspects for
Spring/AspectJ users

— Dependency injection on any object even if it isn’t constructed by
the Spring 1oC container

blish ~T1 1 5
Ip'fo;:gt;; Spring
L -

2006, Interface21]_ d. Cop
out expressed wnt?en per

i

INTERFACEZ](Z)

Spring AOP (1.2.x): Pros and Cons

* Pros
— Solid proxy-based model
— Highly extensible

— Ease of adoption

Zero impact on development process and
server environment

 Cons
— No pointcut expression language
— XML configuration can be verbose
— Highly extensible, but only in Java technology

F
2006, Interface21 blishing, or ...
out expressed er# perl prohibited. j Q SpI 1 rl E—_):
| -

yo =X

INTERFACEZ]@

Spring 2.0 Aims for Spring AOP

« Build on strengths, eliminate weaknesses

* Preserve ease of adoption

— Still zero impact on development
process, deployment

— Easier to adopt
« Benefit from the power of AspectJ
* Provide a comprehensive AOP roadmap
for Spring users, spanning
— Spring AOP
— AspectJ

e 7

-

INTERFACEZ](Z)

Spring 2.0 Aims for Spring AOP

» Solution

— Work with AspectJ, the de facto standard
for full-featured AOP

— Aspect] lead Adrian Colyeris now CTO
at Interface21

— Adrian is now working on Spring as well as AspectJ
— Take advantage of XML configuration extensions

r
-2006, MterfaceZl blishing, or S -

INTERFABEZ](_Z/]]

Benefits for Spring AOP

« Benefits from industry leading pointcut expression
language

« Benefits from well thought-out semantics behind
@Aspectd model

« Gains ability to have type-safe advice

* Benefits from input from leading AOP thinkers

I"Sf:;?g;;;. A Spring

: f
p -2006, Interface21 IL-t'd. Cop
i hout expressed written per

INTERFACEZ1\{

Benefits for AspectJ

« Aspectd is a language, not a framework

— Benefits from a framework offering DI and service
abstractions

— Dl is as compelling for aspects as for objects

« AspectJ gains an incremental adoption path

J ,
-2006, terface21 blishing, or -
' hout expressed ert per s prohibited. S p rl rl (j
A O

INTERFACE 21\{&

Benefits for You

* You can use the same knowledge in Spring
and AspectJ

« Exciting possibilities around rich domain models

i ¥ | & =
3 . . i

-2006, Iterfacezgl. . Co blishing, or
) hout expressed Wri{ per s prohibited.

Spring

INTERFACE21\4%

Pointcut Expressions

e Spring can use AspectJ pointcut expressions
— In Spring XML
— In @Aspect] aspects
— In Java code (with Spring ProxyFactory)

blishing, or
per s prohibi ited.

"'_-
2006, Int rf 2
(. HAsE By Spring

INTERFACEZ]@

What's So Good About AspectJ
Pointcut Expressions?

« (o far beyond simple wildcarding

* AspectJ views pointcuts as first-class
language constructs
— Can compose pointcuts into expressions
— Can reference named pointcuts, enabling reuse
— Can perform argument binding

— Can express complex matching logic concisely

F
2006, Interface21 blishing, or ... -
‘*.hout expressed wrlt)/rz1 perl prohibited. Sp I l rl 5__11
| -

INTERFACEZ]

Aspectd Is Well Documented...

Real-World Aspect-Ortented Programming with Java

fe cli pse the eclipse series

WWILEY JAVA OPEN SOURCE LIBRARY
Mastering

Aspect)

Aspect-Oriented
Programming
in Java

eclipse
Aspeg

ct-Oriented Programming

Ramnivas Laddad

ct-Oriented Programming
1 Aspectd and the Eclipse
T Tools

Joseph D. Gradecki
Nicholas Lesiecki

| | T

O'REILLY" Russ Miles i ——

“=Andy Clement
-+ « Matthew Webster

ITORS » Erich Gamma - Lee Nackman - John Wiegand

] | iy

]

J | §
-2006, Interface21
hout expressed Wri{

. Co blishing, or
s prohibited.

Yy

—

INTERFADE21L2)-"

AOP Is About Pointcuts

« Pointcuts give us the tool to think about program
structure in a different way to OOP

« Without a true pointcut model we have only trivial

Interception

— Does not achieve aim of modularizing
crosscutting logic

— DRY (Don'’t repeat yourself) Principle

* Spring AOP has always had true pointcuts
— But now they are dramatically improved

Spring

== . j i
op t —2006, Interface21 Ltd. Cop blishing, or
istri L hout expressed written per s prohibited.

POJO Methods as Advice

INTERFACEZ1 @

public class JavaBeanPropertyMonitor {

private int getterCount
private int setterCount

public void beforeCGetter() {

this.getterCount++;

}

O;
O;

public void afterSetter() {
this.setterCount++;

}

-

erfac

ésed

e
per s

blishing, o

prohlblte

Spring

Applying Pointcuts

<aop:config>
<aop:aspect bean=""javaBeanMonitor'>
<aop:before
pointcut=

INTERFACEZ1 @

<::%§§putlon(public 'void get*())"
me = =

/>
<aop:afterReturning
pointcut=

<::%§§cutlon(public void set*(*))"
me = =

/>
</aop:aspect>
</aop:config>

06 erface blishing, orr
hout e ssed per s prohibited.

Spring

INTERFACEZ1 @

@AspectJ-style Aspects

@Aspect
:'pub*it';;ass AJLogglngAspect {

Poi " * _* ceant *¢ Y)Y
<::f‘ public void callsToAccount(){}

ore('callsToAccount()™)
nublic void before(JoinPoint 1227{
System.out.printIn("Before [+

Jjp-toShortString() + "]1-");

V V

}

@AfterReturning(“*calIsToAccount()')

public void after() {
System.out.printin("After.");

ks

blishing, o
prohibited

% rface
ut e ssed per s
H

. Spring

INTERFACEZ1 @

Setting up @AspectJ-style Aspects In
Spring

<aop:aspectj-autoproxy/>
<pean i1d="account'"™ class=""demo.Account'/>

<bean i1d=""aspect" class=""demo.ataspectj.AjLoggingAspect' />

blishing, or
prohlblted

Spring

%OG erface
ut ssed per s

INTERFACEZ]@

Argument binding

@Aspect
public class TrackStringSetters {

// Of course saving all names is not suitable for
// production use, but this is a simple sample
private List<String> namesRequested = new LinkedList();

@Before('execution(* *.set*(String)) && args(name) && this(mytype)™)
public synchronized void onStringSetter(String name, Mytype mytype) {
iT (namesRequested.size() > historySize) {
namesRequested. remove(0);
}

namesRequested.add(name) ;

}

public List<String> getNamesRequested() {
return namesRequested;
s

F
-2006, Interface21 blishing, or 3 -
hout expressed er# perI prohibited. ‘ ! Sp rl n f_f
-

o !
I

INTERFABEZ](_Z/]]

Spring 2.0: Unique AOP Unification

* Brings same programming model
(based on AspectJ) to proxy-based and class weaving

based AOP

— Choice of implementation strategies
— Consistent programming model
— Based on AspectJ, proven de facto standard for AOP

« Can compile aspects or use AspectJ
load-time weaving, preserving the same programming
model

* Again, no conflict between simplicity and power

— Less powerful, less general mechanisms are simplistic, rather
than simple

I"éf:h”ste?; Spring
-

2006, Interface21 Ltd Cop
out expressed wrltten per

e

INTERFACEZ]1

ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

Spring 2.0 AOP:
Demo

IN'T'ERF.»I'*‘&BEZ’I(_2/'1j

Spring and Java Persistence API

« Java Persistence API (JPA) is the persistence part of the
Enterprise JavaBeans™ 3.0 specification

— Finally standardizes real-world O/R mapping functionality

e Spring 2.0 integrates Java Persistence API In its consistent data
access abstraction

« As always, Spring offers
— Unified programming model for Java EE and Java SE platforms

— Ease of testing (without need to deploy to an application server)

« Spring allows access to full JPA functionality without an EJB
container

* Value adds beyond the JPA 1.0 specification that work portably
across all leading persistence providers

blishi e 1
I bl Spring
—

-2006, Interface21 Ltd Cop
out expressed wrltten per

INTERFACEZ]1

ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

Spring 2.0 JPA:
Demo

INTERFACEZ]@

Spring 2.0: What Breaks?

Endpoints for Views: JSP, Velocity,...
remote clients:
SOAP, RMI, ... Java: MVC controllers

Service objects / Business Facades Transactional
(analogous to SLSBs) boundaries

Spring Domain objects

AOP
DAO interfaces «—

\

=
~r\§~v
-

Spring DAO DAO implementations

N .
v @

y $
1

& , -
" v B~
1

ring

INTERFACEZ](Z)

Spring 2.0: What Breaks?

o Spring 2.0 is fully backward compatible

* Enterprise-class technologies can’t remain credible if
they break existing application code

 POJO-based technology offers the stability
In programming model J2EE technology
has lacked
— Spring offers the mature, proven realisation

Across J2EE and J2SE platforms

(. HAmE Ry Spring

INTERFACEZI@

Do | Need Java 5 with Spring 2.0?

* No, but you’ll get an increasing amount of cool stuff if
you are able to use Java 5

— Spring 1.2 already introduced value adds on Java 5, such as
@Transactional

— Aspect] integration requires Java 5 for full range of pointcut
expressions

Spring 2.x series will run on Java platform
1.3 and above

Continues to run on all leading application servers,
web containers

— Or without any other container

blish B B
Ip'fo;:gt;; Spring
L -

2006, Interface21]_ d. Cop
out expressed ertﬁl n per

i

|NTERFABE21@,§'
Summary (1)

e Spring 2.0 Aims
— Build on core Spring aim of offering a POJO
programming model
— Make Spring both simpler to use and more powerful

e Spring 2.0 introduces simplified, extensible XML
configuration
— Custom tags for Java Naming and Directory Interface API,
AOP, transactions and more
 Significant improvements in Spring AOP
— Pointcut expression support
— AspectJ-style aspect support
— @Aspect] aspect support

. i
opy! 4-2006, Interface21 Ltd. Cop blishing, or g -y B (}-
' istri Iirhout expressed written per s prohibited. _E | }_) 1 1 1 1 4
i,
] ! i

INTERFACEZ’I@

Summary (2)

« Many other enhancements, including...
— TaskExecutor abstraction

— Adds asynchronous JMS API to complement existing
synchronous JMS API support

Message-driven POJOs
— Message reception within XA transaction

— Ease-of-use improvements for Spring MVC
— Portlet MVC framework

2006, Interface21 |_ﬂld Cop
out expressed wnt?en per

Iy

INTERFACEZ]1

ENTERPRISE DEVELOPMENT SERVICES DIRECT FROM THE CREATORS OF SPRING FRAMEWORK

Questions

	What’s New and Cool in Spring 2.0
	Goals of This Talk
	Agenda
	Aims of Spring
	Technical Aims of Spring
	POJO Development
	Applying Services to �POJOs Declaratively
	Enabling Technologies
	Spring in Practice
	What’s in it for you?
	Who Uses Spring?
	Who Uses Spring?
	A User’s Perspective
	A User’s Perspective
	About Voca �
	Voca’s Experience with Spring and Interface21
	Spring 2.0
	Spring 2.0 Goals
	Spring 2.0
	Agenda
	Spring 2.0: New Features
	Type Inference: Java
	Type Inference: Configuration
	Spring 2.0: New Features
	Spring 2.0: New Features
	Groovy components:�Example
	Spring 2.0: New Features
	Spring 2.0: New Features
	Spring 2.0: Ease of Use
	Spring 2.0: SimpleJdbcTemplate
	Varargs and Autoboxing
	SimpleJdbcTemplate: Generics
	Spring 2.0 Enhancements
	Agenda
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	XML Configuration in Spring 2.0
	Transaction Simplification
	Extended Configuration Options
	Authoring custom extensions: Step 1
	Authoring custom extensions: Step 2
	Authoring custom extensions: Step 3
	Using custom extensions
	XML Configuration Best Practices
	Agenda
	Recap: Why AOP Matters
	A Common Vocabulary
	Enterprise application vocabulary
	Requirements
	Meaningful abstractions
	Meaningful abstractions
	Faithfulness to requirements
	Faithfulness to requirements
	System Architecture
	AOP in Spring 2.0
	Spring AOP (1.2.x): Pros and Cons
	Spring 2.0 Aims for Spring AOP
	Spring 2.0 Aims for Spring AOP
	Benefits for Spring AOP
	Benefits for AspectJ
	Benefits for You
	Pointcut Expressions
	What’s So Good About AspectJ Pointcut Expressions?
	AspectJ Is Well Documented…
	AOP Is About Pointcuts
	POJO Methods as Advice
	Applying Pointcuts
	@AspectJ-style Aspects
	Setting up @AspectJ-style Aspects in Spring
	Argument binding
	Spring 2.0: Unique AOP Unification
	Spring 2.0 AOP:�Demo
	Spring and Java Persistence API
	Spring 2.0 JPA:�Demo
	Spring 2.0: What Breaks?
	Spring 2.0: What Breaks?
	Do I Need Java 5 with Spring 2.0?
	Summary (1)
	Summary (2)
	Questions

